федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный химико-фармацевтический университет» Министерства здравоохранения Российской Федерации

Фармацевтический факультет

Кафедра физиологии и патологии

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ В Т.Ч. ОЦЕНОЧНЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Б1.О.17 ЦИТОЛОГИЯ

Направление подготовки: 06.03.01 Биология
Профиль подготовки: Фундаментальная и прикладная биология
Формы обучения: очная
Квалификация (степень) выпускника: Бакалавр

Год набора: 2023

Срок получения образования: 4 года

Объем: в зачетных единицах: 5 з.е.

в академических часах: 180 ак.ч.

Разработчики:

Кандидат медицинских наук, доцент кафедры физиологии и патологии Кудрицкая О. Ю.

Рабочая программа дисциплины составлена в соответствии с требованиями Φ ГОС ВО по направлению подготовки 06.03.01 Биология, утвержденного приказом Минобрнауки России от 07.08.2020 № 920.

Согласование и утверждение

Ŋ	Подразделение или коллегиальный орган	Ответственное лицо	ФИО	Виза	Дата, протокол (при наличии)
1	Кафедра биохимии	Ответственный за образовательную программу	Повыдыш М.Н.	Согласовано	20.05.2022
2	Кафедра физиологии и патологии	Заведующий кафедрой, руководитель подразделения, реализующего ОП	Тюкавин А.И.	Рассмотрено	20.05.2022
3	Методическая комиссия факультета	Председатель методической комиссии/совета	Жохова Е.В.	Согласовано	01.06.2022,

Согласование и утверждение образовательной программы

№	Подразделение или коллегиальный орган	Ответственное лицо	ФИО	Виза	Дата, протокол (при наличии)
1	Фармацевтический факультет	Декан, руководитель подразделения	Ладутько Ю.М.	Согласовано	23.06.2022,

СОДЕРЖАНИЕ

1.	Перечень планируемых результатов обучения по дисциплине, соотнесенных	C
	планируемыми результатами освоения образовательной программы	.4
1.1.	Место дисциплины в структуре ОП	5
2.	Распределение часов дисциплины по семестрам	5
3.	Структура, тематический план и содержание дисциплины	5
4.	Формы текущего контроля	8
5.	Формы промежуточной аттестации	
6.	Балльная система оценивания по дисциплине	18
7.	Перечень основной и дополнительной учебной литературы, необходимой д	ЛЯ
	освоения дисциплины. Электронно-библиотечные системы	19
8.	Перечень информационных технологий, используемых при осуществлени	ии
	образовательного процесса по дисциплине, включая перечень программно	ГО
	обеспечения и информационных справочных систем	19
9.	Специальные помещения, лаборатории и лабораторное оборудование	20
10.	Методические материалы по освоению дисциплины	21
11.	Оценочные материалы	

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы В результате освоения программы бакалавриата обучающийся должен овладеть

следующими результатами обучения по дисциплине:

Код	Результаты освоения ООП (Содержание компетенций)	ия по дисциплине. Индикаторы достижения	Перечень планируемых результатов обучения по дисциплине
ОПК-2	Способен применять принципы структурнофункциональной организации, использовать физиологические, биохимические, биохимические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания	ОПК-2.2 Применяет принципы структурнофункциональной организации, использует физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов	закономерности структурной организации клеток с позиции единства строения и функции; механизмы транспорта молекул и ионов через клеточные мембраны, функции клеточных мембран; основные пути энергетического и пластического обменов в клетках растений и животных; свойства генетического кода; основы процессов матричного синтеза; фазы клеточного цикла и типы деления клеток; молекулярные механизмы управления клеточным циклом; молекулярные процессы, связанные с формированием и разрушением микротрубочек, микрофиламентов, промежуточных филаментов; механизмы движения и изменения формы клеток, формирования межклеточных контактов; Уметь: объяснить участие различных клеточных структур в механизмах гомеостатической регуляции, хранении, передачи и реализации наследственной информации; объяснить свойства полупроницаемости и избирательности клеточных мембран, механизмы специфического,

неспецифического эндоцитоза и трансцитоза; объяснить механизмы субстратного, окислительного и фотофосфорилирования;
Владеть: навыками идентификации клетки в состоянии плазмолиза и лизиса;

1.1. Место дисциплины в структуре ОП

Дисциплина Б1.О.17 Цитология относится к обязательной части образовательной программы и изучается в семестре(ах): 4.

Последующие дисциплины (практики) по связям компетенций:

Б1.О.21 Анатомия человека

Б1.О.22 Биохимия

Б1.О.23 Гистология

БЗ.01 Подготовка к защите и защита выпускной квалификационной работы

В процессе изучения дисциплины студент готовится к видам профессиональной деятельности и решению профессиональных задач, предусмотренных ФГОС ВО и образовательной программой.

2. Распределение часов дисциплины по семестрам

ОФО

Семестр (курс)	4 семестр (2)
Виды деятельности	1
лекционные занятия	34
лабораторные занятия	34
практические занятия/ семинарские занятия	16
руководство курсовой работой	-
контактная работа на выполнение курсового проекта	-
практическая подготовка	-
консультация перед экзаменом	2
самостоятельная работа	58
промежуточная аттестация	36
общая трудоемкость	180

3. Структура, тематический план и содержание учебной дисциплины

	лекционные занятия	практи- ческие занятия / семинарские занятия	лабо-	само- стоятельная	формы текущего
	О	О	О	О	контроля
	Φ	Φ	Φ	Φ	
	O	O	О	O	
Раздел: Предмет и	-	4	2	4	доклад /

задачи, история			конференция /
развития, методы			реферат
цитологии			

Тема раздела: История цитологии.Методы цитологии

Предмет и задачи цитологии. Связь цитологии с другими науками, прикладное значение цитологии.

История цитологии. Создание светового микроскопа и открытие клетки Р.Гуком. Описание клеток растений, простейших и многоклеточных животных М.Мальпиги, Н.Грю, А.Левенгуком, Ф.Фонтана, Я.Пуркиня и др. Открытие ядра клетки Р.Броуном. Клеточная теория Т.Шванна и М.Шлейдена. Развитие клеточной теории в трудах К.Негели, Р.Ремака, Р.Вирхова, М.Ферворна, О.Гертвига. Определение понятий «клетка» и «ткань». Клетка — элементарная единица живого. Клетки прокариот и эукариот. Гомологичность в строении клеток. Клетка как единица строения, функционирования, развития, патологических изменений организмов.

Деление клеток — единственный путь увеличения их числа. Дифференцировка как процесс образования специализированных клеток. Клетка, неклеточные структуры, ткань, орган, системы органов; взаимоотношения их как неразрывных частей единого целостного организма. Клеточные популяции и их типы.

Изобретение микротома. Открытие кариокинеза и цитологических процессов, лежащих в основе оплодотворения и наследственности, работы А.О.Ковалевского, К.М.Бэра, И.Д.Чистякова, Э.Страсбургера, В.Флеминга, О.Гертвига, С.Г.Навашина. Применение витальных красителей, поляризационного микроскопа, рентгеновского исследования в изучении физических свойств клетки. Развитие цитохимических и биохимических исследований. Клеточная теория в современный период. Методы цитологии. Светооптическая микроскопия. Светопольная микроскопия, фазовоконтрастная микроскопия, микроскопия в темном поле, флуоресцентная и интерференционная микроскопия. Электронная микроскопия. Микрофотография. Цейтраферная микросъемка. Культивирование клеток и тканей. Микроманипулятор и микрохирургия. Цитохимические методы. Радиоавтография. Дифференциальное центрифугирование. Иммунохимические методы. Электронная микроскопия.

Раздел: Строение,					тест по итогам
свойства и функции биологических	4	2	8	8	занятия лабораторная работа
мембран					раоота

Тема раздела: Биомембраны

Определение понятия мембраны как белково-липоидной, жидкостной, мозаичной и ассиметричной структуры. Состав бимолекулярного липидного слоя и его свойства. Характеристика периферических, полуинтегральных, трансмембранных белков мембран. Углеводные компоненты мембраны, структура и свойства гликокаликса. Особенности химического состава мембран органоидов и плазмолеммы. Пограничная и защитная функции мембраны. Механизмы пассивного и активного транспорта веществ и ионов через мембрану. Эндоцитоз, экзоцитоз, транцитоз. Рецепторная, сигнальная и ферментативная функции мембран.

Раздел:	4	-	4	4	устный опрос / собеседование
---------	---	---	---	---	---------------------------------

Тема раздела: Цитозоль

Органические и неорганические вещества цитозоля, физико-химические свойства цитозоля. Значение цитозоля в поддержании клеточного гомеостаза. Углеводные, липидные, белковые включения цитоплазмы и их роль в процессах жизнедеятельности клеток.

Раздел: Строение и функции органоидов клетки, система клеточных	5	2	8	4	тест по итогам занятия лабораторная работа
вакуолей					1

Тема раздела: Органоиды клетки

Органоиды и вакуоли как система компартментов клетки. Строение гладкой и гранулярной эндоплазматической сети Предназначение, процессинг, фолдинг, гликозилирование, и адресование белков, синтезируемых на рибосомах, связанных с ЭПС. Участие гладкой ЭПС в синтезе фосфолипидов, стероидных гормонов, биотрансформации ксенобиотиков. Строение аппарата Гольджи, механизмы преобразования, транспорта, сортировки и секреции веществ, образования первичных лизосом с участием аппарата Гольджи. Образование вторичных лизосом, активация ферментов лизосом. Участие лизосом в процессах внутриклеточного переваривания веществ, аутолизисе, аутофагоцитозе, фагоцитозе. Болезни накопления. Вакуолярный транспорт веществ. Строение и функции пероксисом. Строение и функции протеосом и их участие в утилизации белков

Раздел: Особенности пластического и энергетического обмена в различных типах клеток	4	2	4	6	лабораторная работа
---	---	---	---	---	------------------------

Тема раздела: Энергетический и пластический обмен

Энергетический и пластический обмен в клетках прокариот, растений, грибов, животных. Строение митохондрий, митохондрии как полуавтономные органоиды клетки, симбиогенетическая теория происхождения митохондрий. Подготовительный, анаэробный и аэробный этапы окисления глюкозы, субстратное и окислительное фосфорилирование, фотосинтез

Раздел: Строение, состав, свойства и					
функции	5	2	2	8	лабораторная
цитоскелета,	3	2	2	O	работа
межклеточные					
контакты					

Тема раздела: Цитоскелет

Строение, механизмы формирования и разрушения микротрубочек. Строение, функции и механизм движения ресничек и жгутиков. Центриоли клеточного центра и базальные тельца как центры организации микротрубочек. Значение микротрубочек, динеинов и кинезинов в транспорте веществ, органоидов, хромосом. Строение, механизмы формирования и разрушения микрофиламентов. Механизмы движения и изменения формы клеток. Микроворсинки и их значение в жизнедеятельности клеток. Строение, химический состав и функции промежуточных филаментов

Раздел: Строение и	4		2	Q	лабораторная
функции ядра	4	_	2	O	работа

Тема раздела: Ядро

Размеры и формы клеточных ядер. Строение ядерной оболочки, комплекс ядерных пор, ядерная ламина. Ядерный матрикс, ядерный сок, Строение ядрышка. Ядрышковый организатор, гены рРНК, синтез и процессинг рРНК, формирование субъединиц рибосом и механизм их транспорта в цитоплазму. Состав и структура хроматина ядра. Строение нуклеоида и плазмид клеток прокариот

Раздел:	4	2	2	Q	устный опрос /
Генетический код	4	2	2	O	собеседование

Тема раздела: Генетический код

Свойства генетического кода. Транскрипция, сплайсинг, присоединение и модификация нуклеотидов в ходе процессинга мРНК. Инициация, элонгация и терминация синтеза белка. Основные принципы репликации ДНК. Ферментативный комплекс, обеспечивающий репликацию, механизмы удвоения лидирующей и отстающей цепей ДНК. Механизмы репликации теломерных отделов ДНК.

Раздел: Клеточный					vстный опрос /
цикл; механизмы	4	2	2	8	собеселование
апоптоза и некроза					соосседование

Тема раздела: Клеточный цикл и клеточная гибель

Типы деления клеток, биологическое значение митоза и мейоза. Профаза митоза, механизмы конденсации хромосом, фрагментации ядерной оболочки, структур эндоплазматической сети и аппарата Гольджи, построения веретена деления. Метафаза митоза, первичный асинхронный дрейф хромосом, присоединение кинетохоров хромосом к микротрубочкам веретена деления, отделение сестринских хроматид. Анафаза митоза, механизм расхождения хромосом к полюсам клетки. Телофаза, механизмы формирования ядра, деконденсации хромосом, восстановления ЭПС и аппарата Гольджи. Цитокинез. Профаза мейоза, лептотена, зиготена, пахитена, диплотена, диакинез. Особенности формирования метафазной пластинки, анофазы и телофазы редукционного деления. Значение редукционного деления для формирования новых комбинаций генов. Эквационное деление. Механизмы и значение амитоза. Эндомитоз, особенности строения и функционирования политенных хроиосом. Изучение значения митогенов и антимитогенов в регуляции клеточного цикла, участия циклинов и циклинзависимых протеинкиназ в регуляции митоза. Определение морфологических характеристик апоптоза и некроза по схемам и микропрепаратам

Итого часов 34 16 34 58	
-------------------------	--

4. Формы текущего контроля

- доклад / конференция / реферат (шкала: значение от 0 до 4, количество: 1) раздел дисциплины: Предмет и задачи, история развития, методы цитологии

Примерное задание:

Примерные темы рефератов (докладов)

- 1. История цитологии (от Гука до Вирхова, включая клеточную теорию)
- 2. История цитологии. От Вирхова до настоящего времени (включая открытие клеточных органелл)
- 3. Микроскопия в проходящем свете. Обычный микроскоп.
- 4. Микроскопия в темном поле.
- 5. Флуоресцентная микроскопия.
- 6. Ультрафиолетовая микроскопия
- 7. Электронная микроскопия. Эмиссионная микроскопия.
- 8.Электронная микроскопия. Сканирующий микроскоп.

- 9.Метод культивирования. Особенности культивирования клеток теплокровных и холоднокровных животных.
- 10. Метод фракционирования (ультрацентрифугирования)
- 11. Метод авторадиографии
- 12.Методы фиксации и окрашивания клеток и тканей (основные типы фиксаторов, красителей и их предназначение).
- 13. Биохимические методы.
- 14. Молекулярно-генетические методы (основы ПЦР)
- лабораторная работа (шкала: значение от 0 до 1, количество: 1) раздел дисциплины: Строение, свойства и функции биологических мембран

Примерное задание:

Типовое задание. Тема "Строение биологических мембран"

Выполните следующие рисунки в альбомах:

- 1. Структурные компоненты биомембран
- 2. Структура фосфолипидов (фосфоглицеридов)
- 3.Основные фосфолипиды мембран
- 4. Молекула холестерина
- 5. Типы связей между радикалами аминокислот при формировании третичной структуры белка
- 6. Рецепторная функция мембраны (на примере работы ?-адренорецептора)

Типовые вопросы для защиты работы:

- 1. Какие по расположению белки входят в состав мембран?
- 2. Назовите основные типы химических связей в третичной структуре белков?
- 3. Назовите любые (на выбор) 3 фосфолипида мембран?

Типовое задание. Тема "Функции биологических мембран"

Выполните следующие рисунки в альбомах:

- 1. Типы мембранного транспорта
- 2. Механизм облеченной диффузии с участием белков-транспортеров
- 3. Молекулярный механизм работы К+ Na+ АТФ-азы
- 4. Эндоцитоз с образованием окаймленной ямки и рециклинг рецепторов мембран
- 5. Эндоцитоз с образованием кавеолы
- 6. Трансцитоз

Примерные контрольные вопросы по теме:

- 1. Через какие транспортные системы осуществляется более быстрый транспорт веществ?
- 2. В каком направлении и количестве проходят ионы через K+ Na+-насос?
- 3. Назовите типы трансцитоза?
- тест по итогам занятия (шкала: значение от 0 до 5, количество: 1) раздел дисциплины: Строение, свойства и функции биологических мембран

Примерное задание:

Проверочный тест по теме «Биомембраны»

- 1. Наиболее распространенным фосфолипидом мембран в процентном соотношении является.....
- 2. Фосфолипид, имеющий в своем составе 4 жирнокислотных остатка, называется.....
- 3. Липид, имеющий в составе жесткие стероидные кольца, придающий жесткость мембране и определяющий ее барьерные свойства
- 4. Наиболее распространенный 3-х-атомный спирт, входящий в состав липидов -
- 5. Изгиб в составе одного из углеводородных хвостов липидов мембран обусловлен наличиемсвязи.

- 6. Наиболее прочными связями в составе третичной/четвертичной структуры белков являются......связи, образующиеся между аминокислотами......(указать название аминокислоты).
- 7. Наименьшей проницаемостью через биомембраны, требующей наличие специальных транспортных систем, обладают......
- 8. Разновидность транспорта, осуществляемого по градиенту концентраций и без затрат энергии
- 9. Тип каналов, для открытия которых необходимо присоединение специфического вещества
- 10. Тип белковых транспортных систем, обладающих наиболее специфическим связыванием с транспортируемым веществом
- 11. Разновидность транспорта по направлению движения транспортируемых молекул, когда транспортируемые вещества идут в противоположных направлениях-.....
- 12. Источником энергии для транспорта глюкозы из просвета кишечника в эпителиальные клетки стенок кишечника является......
- 13. Укажите направление движение и количество транспортируемых ионов при работе Na+/K+-ATP-азы. (используйте в качестве обозначений «?» из клетки; «?»- в клетку)
- 14. Процесс обратного встраивания рецепторов в мембрану после образования эндосом при эндоцитозе носит название......
- 15. Белки, участвующие в образовании окаймленных ямок и кавеол при эндоцитозе носят названиеисоответственно.
- 16. Ферменты, осуществляющие фосфорилирование белков называются......
- 17. Ферменты, осуществляющие образование цАМФ из АТФ, называются.....
- 18. По своей структуре G-белок, связанный с рецепторами, является......
- 19. Определите последовательность процессов, характеризующихклеточный ответ, при работе рецепторов, связанных с G-белками (на примере рецепторов клеток печени, лигандом для которых является глюкагон и адреналин). Ответ запишите последовательностью цифр.
- 1) Образование из гликогена глюкозы и выход ее из клетки.
- 2) Диссоциация альфа-субъединицы G-белка
- 3) Образование активных форм ферментов, осуществляющих фосфорилирование белков.
- 4) Образование цАМФ
- 5) Взаимодействие рецептора с лигандом
- 6) Активация G-белка
- 7) Активация фермента, катализирующего образование цАМФ
- 8) Изменение конформации рецептора
- 9) Каскад химических реакций
- 10) Замена ГДФ на ГТФ в составе G-белка.
- устный опрос / собеседование (шкала: значение от 0 до 1, количество: 1) раздел дисциплины: Химический состав, свойства и функции цитозоля, характеристика клеточных включений

Примерное задание:

Органические и неорганические вещества цитозоля, физико-химические свойства цитозоля. Значение цитозоля в поддержании клеточного гомеостаза. Углеводные, липидные, белковые включения цитоплазмы и их роль в процессах жизнедеятельности клеток.

- лабораторная работа (шкала: значение от 0 до 1, количество: 1) раздел дисциплины: Строение и функции органоидов клетки, система клеточных вакуолей **Примерное задание:**

Типовое задание.

Выполните следующие рисунки в альбомах:

- 1. Функции гладкой ЭПС
- 2. Модель везикулярного транспорта в аппарате Гольджи
- 3. Модель созревания цистерн в АГ
- 4. Сортировка молекул в АГ
- 5. Структура сигнальной молекулы на экспорт
- 6. структура сигнальной молекулы на транспорт в лизосомы
- 7. Белки (ферменты) лизосом

Типовые вопросы для защиты работы:

- 1. Перечислите 3 фермента лизосом, а также субстраты и продукты расщепления?
- 2. Назовите функции гладкой ЭПС?
- 3. Какова структура сигнальной молекулы на транспорт в лизосомы?
- тест по итогам занятия (шкала: значение от 0 до 5, количество: 1) раздел дисциплины: Строение и функции органоидов клетки, система клеточных вакуолей **Примерное задание:**

Тест по всем клеточным органеллам и структурам

- 1. Процесс пространственной организации полипептидной цепи в третичную структуру в процессе синтеза белков, включающая гликозилирование, изомеризацию, фосфорилирование, называется.......
- 2. Белки (например, дисульфидизомераза), ускоряющие процесс формирования третичной структуры белков, не вступающие в химическое взаимодействие с синтезируемым белком
- 3. Клетка в процессе своей жизнедеятельности синтезирует белки различного назначения: на экспорт и для собственного использования («белки домашнего хозяйства»). Какова локализация процессов синтеза «белков домашнего хозяйства»?
- 4. Наличие какого компонента в составе сигнальной углеводной последовательности свидетельствует о транспорте синтезируемого белка в состав лизосом?
- 5. Ферменты нуклеазы в составе лизосом расщепляютдо........
- 6. Расположите в правильной последовательности этапы синтеза первичной структуры белка на шероховатой ЭПС:

А.Связывание сигнал-распознающей частицы с сигнальным пептидом

- Б.Отсоединение сигнал-распознающей частицы от рибосомы за счет энергии гидролиза $\Gamma T \Phi$
- В.Синтез сигнального пептида на рибосоме
- Г.Связывание рибосомы с мембраной ЭПС через рецептор и транслокон
- Д.Начало трансляции
- Е.Открытие транслокона
- Ж.Продолжение процесса трансляции
- 7. Отделение секреторных пузырьков происходит
- А. от цис- поверхности аппарата Гольджи
- Б. от транс- поверхности аппарата Гольджи
- В. от митохондрий
- Г. от рибосом
- 8.К функциям пероксисом относится
- А. синтез белка
- Б. окисление спиртов и фенолов
- В. синтез АТФ
- Г. синтез нуклеиновых кислот
- 9. Лизосомы выполняют функцию

- А. синтеза гидролитических ферментов
- Б. образования пероксисом
- В. внутриклеточного переваривания веществ
- Г. транспорта веществ от ЭПС к аппарату Гольджи
- 10. Кристы образуются
- А. наружной мембраной ядерной оболочки
- Б. внутренней мембраной митохондрий
- В. наружной мембраной митохондрий
- Г. внутренней мембраной ядерной оболочки
- 11. На гладкой ЭПС происходит
- А. синтез белков
- Б. синтез половых гормонов
- В. образование пероксисом
- Г. образование рибосом
- 12.В цистернах эндоплазматической сети происходит
- А. синтез белков
- Б. фолдинг белков
- В. синтез РНК
- Г. процессинг РНК
- 13. В состав окаймляющего слоя окаймленных пузырьков входят белки
- А. винкулины
- Б. клатрины
- В. кератины
- Г. актины
- 14. Первичные лизосомы отделяются
- А. от ядра
- Б. от аппарата Гольджи
- В. от эндоплазматической сети
- Г. от вторичных лизосом
- 15. Транспортные пузырьки отделяющиеся от эндоплазматической сети сливаются
- А. с транс-цистернами аппарата Гольджи
- Б. с рибосомами
- В. с лизосомами
- Г. с цис-цистернами аппарата Голджи
- 16.В митохондриях происходит
- А. анаэробное окисление органических веществ
- Б. аэробное окисление органических веществ
- В. подготовительный этап расщепления глюкозы
- Г. расщепление воды
- 17.В окислении органических веществ принимают участие ферменты
- А. протенкиназы
- Б. фосфотазы
- В. дегидрогеназы
- Г. каталаза
- 18.К функциям лизосом относится
- А. синтез белков
- Б. окислительное фосфорилирование
- В. расщепление белков
- Г. трансцитоз
- 19.К функциям аппарата Гольджи относится
- А. синтез бела
- Б. синтез нуклеиновых кислот

- В. образование пероксисом
- Г. гликозилирование белков
- 20. На гладкой эндоплазматической сети синтезируются
- А. стероидные гормоны
- Б. белки
- В. АТФ
- Г. РНК
- 21. Компоненты дыхательной цепи находятся
- А. в наружной мембране митохондрий
- Б. в матриксе митохондрий
- В. в цитозоле
- Г. во внутренней мембране митохондрий
- 22. На рибосомах гранулярной эндоплазматической сети синтезируются
- А. стероидные гормоны
- Б. ферменты митохондрий
- В. белки, которые выделяются из клетки
- Г. рибосомные РНК
- 23. Лизосомы содержат ферменты
- А. ДНК-полимеразы
- Б. гликолиза
- В. АТФ-азы
- Г. липазы
- 24.В состав матрикса митохондрий входит
- А. ДНК
- Б. белок порин
- В. белки кадгерины
- Г. лизоцим
- 25.Полиубиквинтирование является сигналом для разрушения белков в
- А.лизосомах
- Б. цитоплазме
- В. протеосомах
- Г. Пероксисомах
- 26. Где протекает световая и темновая фазы фотосинтеза?
- А. Световая-в цитоплазме, темновая- на мембране тилакоидов
- Б. Световая в строме хлоропласта, темновая-на мембране тилакоида
- В. Световая- на мембране тилакоида, темновая- в строме хлоропласта
- Г. Световая и темновая фазы на мембране тилакоида.
- 27. Перичислите 3 основных конечных продукта световой фазы фотосинтеза.
- 28.Рассчитайте энергетический эффект от суммарного количества молекул НАДН2 (без учета других молекул) при расщеплении 4-х молекул глюкозы?
- 29.В процесс расщепления и окисления вступают 3 молекулы глюкозы. Рассчитайте энергетический эффект для каждого этапа: А-подготовительный; Б- анаэробное окисление, В-аэробное окисление; Г- дыхательная цепь)?
- 30.В дыхательную цепь митохондрий поступило 50 ФАДН2. В результате расщепления и окисления скольких молекул глюкозы образовалось данное количество молекул?
- лабораторная работа (шкала: значение от 0 до 1, количество: 1) раздел дисциплины: Особенности пластического и энергетического обмена в различных типах клеток

Примерное задание:

Типовое задание.

Выполните следующие рисунки в альбомах:

- 1. І этап. подготовительный
- 2. ІІ этап. Анаэробное окисление
- 3. Суммарная реакция расщепления и окисления глюкозы в цитозоле
- 4. Этап III. Аэробное окисление. Окислительное декарбоксилирование ПВК
- 5. .III Этап. Аэробное окисление. Цикл кребса
- 6. III Этап. Аэробное окисление. Продукты цикла кребса
- 7. Дыхательная цепь митохондрий
- 8. Суммарный энергетический выход расщепления и окисления глюкозы

Типовые вопросы для защиты работы:

- 1. Где в клетке происходит этап аэробного окисления?
- 2. Где располагаются компоненты дыхательной цепи?
- 3. На каком этапе образуется наибольшее количество НАДН2?
- лабораторная работа (шкала: значение от 0 до 1, количество: 1) раздел дисциплины: Строение, состав, свойства и функции цитоскелета, межклеточные контакты

Примерное задание:

Выполните следующие рисунки в альбомах:

- 1. Временная зависимость процесса полимеризации актиновых микрофиламентов
- 2. Типы актинсвязывающих белков
- 3. Полимеризация тубулина в микротрубочках
- 4. Строение реснички (жгутика)
- 5. Центриоли клеточного центра
- 6. Модель полимеризации промежуточных филаментов

Примерные контрольные вопросы:

- 1. В состав каких клеточных структур и в каком количестве входят микротрубочки?
- 2. Опишите процесс полимеризации промежуточных филаментов?
- 3. Назовите 3 примера актинсвязывающих белков и их функции?
- лабораторная работа (шкала: значение от 0 до 1, количество: 1) раздел дисциплины: Строение и функции ядра

Примерное задание:

Выполните следующие рисунки в альбомах:

- 1. Строение нуклеосомы
- 2. Н1 линкерный гистон
- 3. уровни компактизации хроматина
- 4. Структурные компоненты ядрышка
- 5. Строение ядерной поры

Примерные контрольные вопросы:

- 1. Назовите белки, входящие в состав нуклеосомы?
- 2. Назовите разницу между нуклеомерной и соленоидной моделями формирования хроматиновой фибриллы?
- 3. Опишите структуру ядерной поры?
- устный опрос / собеседование (шкала: значение от 0 до 1, количество: 1) раздел дисциплины: Генетический код

Примерное задание:

Свойства генетического кода. Транскрипция, сплайсинг, присоединение и модификация нуклеотидов в ходе процессинга мРНК. Инициация, элонгация и терминация синтеза белка. Основные принципы репликации ДНК. Ферментативный комплекс, обеспечивающий репликацию, механизмы удвоения лидирующей и отстающей цепей ДНК. Механизмы репликации теломерных отделов ДНК.

- устный опрос / собеседование (шкала: значение от 0 до 1, количество: 1) раздел дисциплины: Клеточный цикл; механизмы апоптоза и некроза

Примерное задание:

Типы деления клеток, биологическое значение митоза и мейоза. Профаза митоза, механизмы конденсации хромосом, фрагментации ядерной оболочки, структур эндоплазматической сети и аппарата Гольджи, построения веретена деления. Метафаза митоза, первичный асинхронный дрейф хромосом, присоединение кинетохоров хромосом к микротрубочкам веретена деления, отделение сестринских хроматид. Анафаза митоза, механизм расхождения хромосом к полюсам клетки. Телофаза, механизмы формирования ядра, деконденсации хромосом, восстановления ЭПС и аппарата Гольджи. Цитокинез. Профаза мейоза, лептотена, зиготена, пахитена, диплотена, диакинез. Особенности формирования метафазной пластинки, анофазы и телофазы редукционного деления. Значение редукционного деления для формирования новых комбинаций генов. Эквационное деление. Механизмы и значение амитоза. Эндомитоз, особенности строения и функционирования политенных хроиосом. Изучение значения митогенов и антимитогенов в регуляции клеточного цикла, участия циклинов и циклинзависимых протеинкиназ в регуляции митоза.

5. Формы промежуточной аттестации

- экзамен - 2 курс, 4 семестр (шкала: значение от 0 до 22)

Примерное задание:

Примерны вопросы к экзамену (Вопрос 1 (5баллов), Вопрос 2 (5баллов) Билета)

- 1. Предмет и задачи цитологии. Связь цитологии с другими науками, прикладное значение питологии.
- 2. История цитологии. Создание светового микроскопа. Описание клеток растений, простейших и многоклеточных животных. Открытие ядра клетки.
- 3. Клеточная теория Т.Шванна и М.Шлейдена. Определение понятий «клетка» и «ткань». Клеточная теория в современный период.
- 4. Светооптическая микроскопия.
- 5. Светопольная микроскопия, фазовоконтрастная микроскопия, микроскопия в темном поле, флуоресцентная и интерференционная микроскопия
- 6. Электронная микроскопия.
- 7. Микрофотография.
- 8. Цейтраферная микросъемка.
- 9. Культивирование клеток и тканей.
- 10. Микроманипулятор и микрохирургия. Цитохимические методы.
- 11. Радиоавтография.
- 12. Дифференциальное центрифугирование.
- 13. Иммунохимические методы.
- 14. Электронная микроскопия.
- 15. Состав бимолекулярного липидного слоя мембран и его свойства.
- 16. Характеристика периферических, полуинтегральных, трансмембранных белков мембран.
- 17. Углеводные компоненты мембраны, структура и свойства гликокаликса.
- 18. Особенности химического состава мембран органоидов и плазмолеммы.
- 19. Пограничная и защитная функции мембраны.
- 20. Механизмы пассивного и активного транспорта веществ и ионов через мембрану.
- 21. Эндоцитоз, экзоцитоз, транцитоз.
- 22. Рецепторная, сигнальная и ферментативная функции мембран.
- 23. Органические и неорганические вещества цитозоля, физико-химические свойства цитозоля. Значение цитозоля в поддержании клеточного гомеостаза.

- 24. Углеводные, липидные, белковые включения цитоплазмы и их роль в процессах жизнедеятельности клеток.
- 25. Органоиды и вакуоли как система компартментов клетки. Строение гладкой и гранулярной эндоплазматической сети. Предназначение, процессинг, фолдинг, гликозилирование, и адресование белков, синтезируемых на рибосомах, связанных с ЭПС. Участие гладкой ЭПС в синтезе фосфолипидов, стероидных гормонов, биотрансформации ксенобиотиков.
- 26. Строение аппарата Гольджи, механизмы преобразования, транспорта, сортировки и секреции веществ, образования первичных лизосом с участием аппарата Гольджи.
- 27. Образование вторичных лизосом, активация ферментов лизосом.
- 28. Участие лизосом в процессах внутриклеточного переваривания веществ, аутолизисе, аутофагоцитозе, фагоцитозе.
- 29. Болезни накопления.
- 30. Вакуолярный транспорт веществ.
- 31. Строение и функции пероксисом.
- 32. Строение и функции протеосом и их участие в утилизации белков.
- 33. Энергетический и пластический обмен в клетках прокариот, растений, грибов, животных.
- 34. Строение митохондрий, митохондрии как полуавтономные органоиды клетки, симбиогенетическая теория происхождения митохондрий.
- 35. Подготовительный, анаэробный и аэробный этапы окисления глюкозы, субстратное и окислительное фосфорилирование.
- 36. Строение и биогенез пластид, фотофосфорилирование, фотосинтез
- 37. Строение, механизмы формирования и разрушения микротрубочек.
- 38. Строение, функции и механизм движения ресничек и жгутиков.
- 39. Центриоли клеточного центра и базальные тельца как центры организации микротрубочек.
- 40. Значение микротрубочек, динеинов и кинезинов в транспорте веществ, органоидов, хромосом.
- 41. Строение, механизмы формирования и разрушения микрофиламентов. Механизмы движения и изменения формы клеток.
- 42. Микроворсинки и их значение в жизнедеятельности клеток.
- 43. Строение, химический состав и функции промежуточных филаментов.
- 44. Строение ядерной оболочки, комплекс ядерных пор, ядерная ламина. Ядерный матрикс, ядерный сок.
- 45. Строение ядрышка. Ядрышковый организатор, гены рРНК, синтез и процессинг рРНК, формирование субъединиц рибосом и механизм их транспорта в цитоплазму.
- 46. Состав и структура хроматина ядра. Строение нуклеоида и плазмид клеток прокариот.
- 47. Свойства генетического кода. Транскрипция, сплайсинг, присоединение и модификация нуклеотидов в ходе процессинга мРНК.
- 48. Инициация, элонгация и терминация синтеза белка.
- 49. Основные принципы репликации ДНК. Ферментативный комплекс, обеспечивающий репликацию, механизмы удвоения лидирующей и отстающей цепей ДНК. Механизмы репликации теломерных отделов ДНК.
- 50. Типы деления клеток, биологическое значение митоза и мейоза.
- 51. Профаза митоза, механизмы конденсации хромосом, фрагментации ядерной оболочки, структур эндоплазматической сети и аппарата Гольджи, построения веретена деления.
- 52. Метафаза митоза, первичный асинхронный дрейф хромосом, присоединение кинетохоров хромосом к микротрубочкам веретена деления, отделение сестринских хроматид.
- 53. Анофаза митоза, механизм расхождения хромосом к полюсам клетки. Телофаза, механизмы формирования ядра, деконденсации хромосом, восстановления ЭПС и

аппарата Гольджи. Цитокинез.

- 54. Профаза мейоза, лептотена, зиготена, пахитена, диплотена, диакинез.
- 55. Особенности формирования метафазной пластинки, анофазы и телофазы редукционного деления. Значение редукционного деления для формирования новых комбинаций генов.
- 56. Эквационное деление. Механизмы и значение амитоза.
- 57. Эндомитоз, особенности строения и функционирования политенных хромосом.
- 58. Изучение значения митогенов и антимитогенов в регуляции клеточного цикла, участия циклинов и циклинзависимых протеинкиназ в регуляции митоза.
- 59. Определение морфологических характеристик апоптоза и некроза.
- 60. Механизм реализации внешнего пути апоптоза.
- 61. Механизм реализации митохондриального пути апотоза.

Вопрос 3. Практическая задача (5баллов)

Примерные задачи

- 1. Клетка вступает в интерфазу митоза, содержит 20 хромосом, сколько хромосом и молекул ДНК будет содержать эта клетка на стадии профазы и анафазы митоза?
- 2. Клетка вступает в профазу митоза, определите ее плоидность по числу хромосом и молекул ДНК на стадиях метафазы, анафазы и телофазы.
- 3. Клетка вступает в митоз, содержит 10 хромосом. Сколько хромосом и молекул ДНК будет содержать клетка на стадиях метафазы и анафазы?
- 4. На стадии анафазы митоза клетка содержит 8 хромосом, сколько хромосом и сколько молекул ДНК будет содержать данная клетка при переходе стадию G0?
- 5. Ядро клетки на стадии телофазы митоза содержит 8 хромосом, сколько хромосом и молекул ДНК содержала клетка в пресинтетический период интерфазы?

Критерии оценивания:

18-20 баллов: Обучающийся, достигающий должного уровня:

- даёт полный, глубокий, выстроенный логично по содержанию вопроса ответ, используя различные источники информации, не требующий дополнений
- доказательно иллюстрирует основные теоретические положения практическими примерами;
- способен глубоко анализировать теоретический и практический материал, обобщать его, самостоятельно делать выводы, вести диалог и высказывать свою точку зрения.

14-17 баллов: Обучающийся на должном уровне:

- раскрывает учебный материал: даёт содержательно полный ответ, требующий незначительных дополнений и уточнений, которые он может сделать самостоятельно после наводящих вопросов преподавателя;
- демонстрирует учебные умения и навыки в области решения практико-ориентированных задач;
- владеет способами анализа, сравнения, обобщения и обоснования выбора методов решения практико-ориентированных задач.
- 11-13 баллов: Достигнутый уровень оценки результатов обучения обучающегося показывает:
- знания имеют фрагментарный характер, отличаются поверхностью и малой содержательностью; студент раскрывает содержание вопроса, но не глубоко, бессистемно, с некоторыми неточностями;
- слабо, недостаточно аргументированно может обосновать связь теории с практикой;
- способен понимать и интерпретировать основной теоретический материал по дисциплине.
- 0-10 баллов: Результаты обучения обучающегося свидетельствуют:

- об усвоении им некоторых элементарных знаний, но студент не владеет понятийным аппаратом изучаемой образовательной области (учебной дисциплины);
- не умеет установить связь теории с практикой;
- не владеет способами решения практико-ориентированных задач.

6. Балльная система оценивания по дисциплине

ОФО

Семестр (Курс) - 4	1 (2)		
Форма текущего контроля	Раздел дисциплины	Максимальный балл	Максимальный приведенный балл
доклад / конференция / реферат	Предмет и задачи, история развития, методы цитологии	4	
лабораторная работа	Особенности пластического и энергетического обмена в различных типах клеток	1	
лабораторная работа	Строение и функции органоидов клетки, система клеточных вакуолей	1	
лабораторная работа	Строение и функции ядра	1	
лабораторная работа	Строение, свойства и функции биологических мембран	1	
лабораторная работа	Строение, состав, свойства и функции цитоскелета, межклеточные контакты	1	
тест по итогам занятия	Строение и функции органоидов клетки, система клеточных вакуолей	5	
тест по итогам занятия	Строение, свойства и функции биологических мембран	5	
устный опрос / собеседование	Генетический код	1	
устный опрос / собеседование	Клеточный цикл; механизмы апоптоза и некроза	1	
устный опрос / собеседование	Химический состав, свойства и функции цитозоля, характеристика клеточных включений	1	
	Максимальный текущий балл	22	60
Промежуточная а		экзамен	
Макс	имальный аттестационный балл		40
	Общий балл по дисциплине	44	100

Общий балл по дисциплине за семестр складывается из результатов, полученных по формам текущего контроля в течение семестра и аттестационного балла.

Оценка успеваемости по дисциплине в семестре пересчитывается по приведенной 100-балльной шкале независимо от шкалы, определенной преподавателем.

Перевод баллов из 100-балльной шкалы в числовой и буквенный эквивалент:

- для экзамена, зачета с оценкой, курсовой работы (форма контроля из учебного плана):

Сумма баллов	Отметка	Буквенный эквивалент
86-100	5	Отлично
66-85	4	Хорошо
51-65	3	Удовлетворительно
0-50	2	Неудовлетворительно

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины. Электронно-библиотечные системы

основная литература

- 1. Завалеева, С. Цитология и гистология : учебное пособие / С. Завалеева ; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет». Оренбург : ОГУ, 2012. 216 с. : ил., табл. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=259350 дополнительная литература
- 1. Васильев, Ю. Г. Цитология, гистология, эмбриология : учебник / Ю. Г. Васильев, Е. И. Трошин, В. В. Яглов. 2-е изд., испр. Санкт-Петербург : Лань, 2021. 576 с. ISBN 978-5-8114-0899-3. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/168510
- 2. Верещагина, Валентина Александровна. Основы общей цитологии [Текст] : учеб. пособие / В. А. Верещагина. 2-е изд., перераб. М. : Академия, 2007. 172 с.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для обеспечения реализации дисциплины используется стандартный комплект программного обеспечения (ПО), включающий регулярно обновляемое свободно распространяемое и лицензионное ПО, в т.ч. МЅ Office. Программное обеспечение для адаптации образовательных ресурсов для обучающихся из числа лиц с ограниченными возможностями здоровья: Программа экранного доступа Nvda - программа экранного доступа к системным и офисным приложениям, включая web-браузеры, почтовые клиенты, Интернет-мессенджеры и офисные пакеты. Встроенная поддержка речевого вывода на более чем 80 языках. Поддержка большого числа брайлевских дисплеев, включая возможность автоматического обнаружения многих из них, а также поддержка брайлевского ввода для дисплеев с брайлевской клавиатурой. Чтение элементов управления и текста при использовании жестов сенсорного экрана.

Перечень программного обеспечения (обновление производится по мере появления новых версий программы) Не используется.

Перечень информационно-справочных систем (обновление выполняется еженедельно) Не используется.

Профессиональные базы данных 1. eLibrary.ru - Портал научных публикаций

Ресурсы «Интернет»

- 1. https://biomolecula.ru/ Электронный ресурс научных публикаций Биомолекула
- 2. https://www.springernature.com/gp Springer Nature [международное издательство] : [сайт] / Springer Nature Group [Ха́йдельберг], [Лондон]
- 3. https://www.ncbi.nlm.nih.gov/pubmed/ Международный онлайн-портал научных публикаций
- 4. https://cyberleninka.ru Научная электронная библиотека «Киберленинка»

9. Специальные помещения, лаборатории и лабораторное оборудование

Для обеспечения реализации дисциплины используется оборудование общего назначения, специализированное оборудование, оборудование, обеспечивающее адаптацию электронных и печатных образовательных ресурсов для обучающихся из числа лиц с ограниченными возможностями здоровья, наборы демонстрационного оборудования и учебно-наглядных пособий по списку.

Специализированная многофункциональная учебная аудитория для проведения учебных занятий лекционного типа, семинарского типа (практических занятий), лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, в том числе, для организации практической подготовки обучающихся, подтверждающая наличие материально-технического обеспечения, с перечнем основного оборудования:

проектор, персональные компьютеры с возможностью подключения к сети Интернет и информационно-образовательную обеспечением доступа В электронную лицензиата, учебная мебель для педагогического работника и обучающихся (столы и стулья), экран для проектора, маркерная доска, спектрофотометр, микроцентрифуга, роторы мешалка магнитная, дозатор, микроскопы, система блоттинга программноаппаратный комплекс для визуализации и документирования ЭФ гелей и блоттинга, мульти-ротатор термостат типа Драй-блок, камера электрофоретическая горизонтальная, дозатор центрифуга лабораторная с охлаждением система визуализации с функцией флуоресцентной детекции (197022, город Санкт-Петербург, улица Профессора Попова, д. 4, лит. В учебная аудитория № 1 (в соответствии с документами по технической инвентаризации - помещение № 319)

Помещение для самостоятельной работы обучающихся, подтверждающее наличие материально-технического обеспечения, с перечнем основного оборудования:

персональные компьютеры с возможностью подключения к сети Интернет и обеспечением доступа в электронную информационно-образовательную среду лицензиата, учебная мебель для педагогического работника и обучающихся (столы и стулья), маркерная доска (197022, город Санкт-Петербург, Аптекарский проспект, д. 6, лит. А, пом. 23Н учебная аудитория № 4 (в соответствии с документами по технической инвентаризации - часть помещения 23Н № 12)

Помещение для самостоятельной работы обучающихся, подтверждающее наличие материально-технического обеспечения, с перечнем основного оборудования:

персональные компьютеры с возможностью подключения к сети Интернет и обеспечением доступа в электронную информационно-образовательную среду лицензиата, учебная мебель для педагогического работника и обучающихся (столы и стулья), маркерная доска (197022, г. Санкт-Петербург, Аптекарский проспект, д.6, лит.А пом.29Н учебная аудитория № 8 (в соответствии с документами по технической инвентаризации - часть помещения 29Н № 4)

Оборудование, обеспечивающее адаптацию электронных и печатных образовательных ресурсов для обучающихся из числа лиц с ограниченными возможностями здоровья (место размещения - учебно-методический отдел, устанавливается по месту проведения занятий (при необходимости)):

Устройство портативное для увеличения DION OPTIC VISION - предназначено для обучающихся с нарушением зрения с целью увеличения текста и подбора контрастных схем изображения;

Электронный ручной видеоувеличитель Bigger D2.5-43 TV - предназначено для обучающихся с нарушением зрения для увеличения и чтения плоскопечатного текста; Радиокласс (радиомикрофон) «Сонет-РСМ» РМ-6-1 (заушный индиктор) - портативная звуковая FM-система для обучающихся с нарушением слуха, улучшающая восприятие голосовой информации.

10. Методические материалы по освоению дисциплины

В ходе реализации учебного процесса по дисциплине проводятся учебные занятия и выполняется самостоятельная работа. По вопросам, возникающим в процессе выполнения самостоятельной работы, проводятся консультации.

Методические указания по формам работы

Консультации в период теоретического обучения

Консультации в период теоретического обучения предназначены для разъяснения порядка выполнения самостоятельной работы и ответа на сложные вопросы в изучении дисциплины.

Лекции

Лекции предназначены для сообщения обучающимся необходимого для изучения дисциплины объема теоретического материала. В рамках лекций преподавателем могут реализовываться следующие интерактивные образовательные технологии: дискуссия, лекция с ошибками, видеоконференция, вебинар.

Лабораторные занятия

Практические занятия

Практические занятия предусматривают применение преподавателем различных интерактивных образовательных технологий и активных форм обучения: дискуссия, деловая игра, круглый стол, мини-конференция.

Наименование образовательной технологии	Краткая характеристика
Дифференцированное обучение	Технология обучения, целью которой является создание оптимальных условий для выявления задатков, развития интересов и способностей обучающихся через разделение на группы, подразумевает наличие разных уровней учебных требований к группам в овладении ими содержанием образования.
Проблемное обучение	Поисковые методы, постановка познавательных задач с учетом индивидуального социального опыта и особенностей обучающихся, построение проблемной ситуации (задачи) и обучение умению находить оптимальное решение для выхода из этой ситуации.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

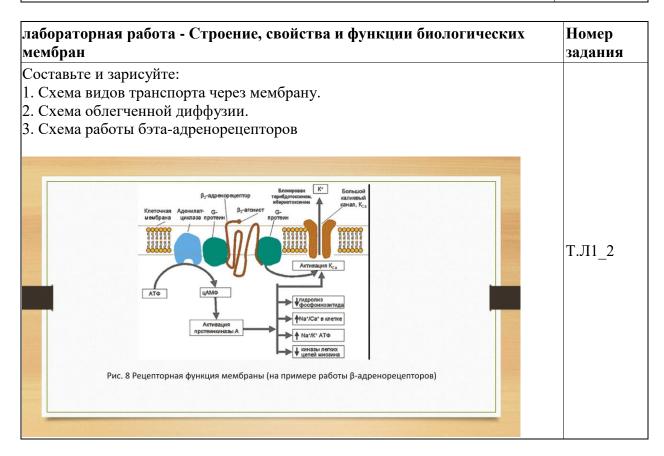
1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы В результате освоения программы бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине (модулю):

Код	Результаты освоения ООП (Содержание компетенций)	Индикаторы достижения	Перечень планируемых резу обучения по дисципли	
ОПК-2	биохимические, биофизические методы анализа для оценки и коррекции	ОПК-2.2 Применяет принципы структурнофункциональной организации, использует физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов	Знать: основные закономерности структурной организации клеток с позиции единства строения и функции; механизмы транспорта молекул и ионов через клеточные мембраны, функции клеточных мембран; основные пути энергетического и пластического обменов в клетках растений и животных; свойства генетического кода; основы процессов матричного синтеза; фазы клеточного цикла и типы деления клеток; молекулярные механизмы управления клеточным циклом; молекулярные процессы, связанные с формированием и разрушением микротрубочек, микрофиламентов, промежуточных филаментов; механизмы движения и изменения формы клеток, формирования межклеточных контактов;	П.П1 П.П2 П.П3 П.П4 П.П5 П.П6 П.П7 П.П8 П.П9 П.П10 П.П11 П.П12 П.П13 П.П14 П.П15 П.П15 П.П16 П.П17 П.П18 П.П15 П.П16 П.П17 П.П18 П.П17 П.П18 П.П19 П.П19 П.П19 П.П20 П.ТВ1 П.ТВ2 П.ТВ3 П.ТВ4 П.ТВ5 П.ТВ5 П.ТВ6

T		
		П.ТВ7
		П.ТВ8
		П.ТВ9
		П.ТВ10
		П.ТВ11
		П.ТВ12
		П.ТВ13
		П.ТВ14
		П.ТВ15
		П.ТВ16
		П.ТВ17
		П.ТВ18
		П.ТВ19
		П.ТВ20
		П.ТВ21
		П.ТВ22
		П.ТВ23
		П.ТВ24
		П.ТВ25
		П.ТВ26
		П.ТВ27
		П.ТВ28
		П.ТВ29

	П.ТВ30
	П.ТВ31
	П.ТВ32
	П.ТВ33
	П.ТВ34
	П.ТВ35
	П.ТВ36
	П.ТВ37
	П.ТВ38
	П.ТВ39
	П.ТВ40
	П.ТВ41
	П.ТВ42
	П.ТВ43
	П.ТВ44
	П.ТВ45
	П.ТВ46
	П.ТВ47
	П.ТВ48
	П.ТВ49
	П.ТВ50
	Т.Д1_1
	Т.Д2_1
	Т.Д3_1

		Т.Д4_1
		Т.Д5_1
		Т.Д6_1
		Т.Д8_1
		Т.Д9_1
		Т.Д10_1
		т.Д11_1
		Т.Д12_1
		т.Д13_1
		Т.Д14_1
		Т.Л1_2
		T.T1_2
		Т.У1_3
		Т.Л1_4
		T.T1_4
		T.T2_4
		T.T3_4
		T.T4_4
		T.T5_4
		T.T6_4
		T.T7_4
		T.T8_4
		T.T9_4


	T.T10_4
	T.T11_4
	T.T12_4
	T.T13_4
	T.T14_4
	T.T15_4
	T.T16_4
	T.T17_4
	T.T18_4
	T.T19_4
	T.T20_4
	T.T21_4
	T.T22_4
	T.T23_4
	T.T24_4
	T.T25_4
	T.T26_4
	T.T27_4
	T.T28_4
	T.T29_4
	Т.Л1_5
	Т.Л1_6
	Т.Л1_7
	Т.У1_8

		Т.У1_9
	Уметь: объяснить участие различных клеточных структур в механизмах гомеостатической регуляции, хранении, передачи и реализации наследственной информации; объяснить свойства полупроницаемости и избирательности клеточных мембран, механизмы специфического, неспецифического эндоцитоза и трансцитоза; объяснить механизмы субстратного, окислительного и фотофосфорилирования; Владеть: навыками идентификации клетки в состоянии плазмолиза и лизиса;	П.П1 П.П2 П.П3 П.П4 П.П5 П.П13 Т.Д7_1 Т.Т12_4 Т.Т24_4 П.П1 П.П2 П.П3 П.П4 П.П5 П.П8 П.П13 Т.Д7_1 Т.Д7_1 Т.Д7_1 Т.Д7_1

2. Контрольные задания. Текущая аттестация

доклад / конференция / реферат - Предмет и задачи, история развития,	Номер
методы цитологии	задания
Доклад. История цитологии (от Гука до Вирхова,включая клеточную теорию).	Т.Д1_1
История цитологии. От Вирхова до настоящего времени (включая открытие клеточных органелл)	Т.Д2_1
Микроскопия в проходящем свете. Обычный микроскоп.	Т.Д3_1
Микроскопия в темном поле.	Т.Д4_1
Флуоресцентная микроскопия.	Т.Д5_1

Лазерная конфокальная микроскопия	Т.Д6_1
Электронная микроскопия. Эмиссионная микроскопия.	Т.Д7_1
Электронная микроскопия. Сканирующий микроскоп.	Т.Д8_1
9.Метод культивирования. Особенности культивирования клеток теплокровных и холоднокровных животных.	Т.Д9_1
10.Метод фракционирования (ультрацентрифугирования)	Т.Д10_1
11.Метод авторадиографии	Т.Д11_1
12.Методы фиксации и окрашивания клеток и тканей (основные типы фиксаторов, красителей и их предназначение).	Т.Д12_1
13. Биохимические методы.	Т.Д13_1
14. Молекулярно-генетические методы (основы ПЦР)	Т.Д14_1

тест по итогам занятия - Строение, свойства и функции биологических мембран	Варианты ответов	Номер задания
15. К основным свойствам клеточных мембран относятся	 А. отсутствие избирательности Б. проницаемость для всех веществ В. высокая механическая прочность Г. избирательная проницаемость 	T.T1_2

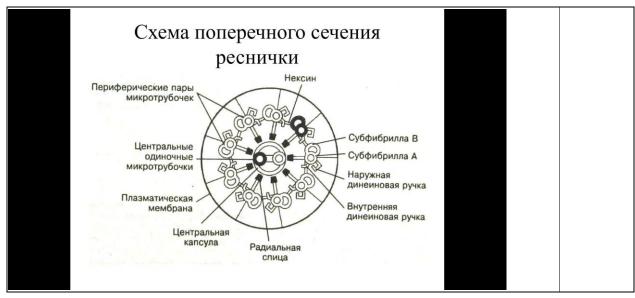
устный опрос / собеседование - Химический состав, свойства и функции	
цитозоля, характеристика клеточных включений	задания
Органические и неорганические вещества цитозоля, физико-химические	
свойства цитозоля. Значение цитозоля в поддержании клеточного гомеостаза.	Т.У1 3
Углеводные, липидные, белковые включения цитоплазмы и их роль в	1.91_3
процессах жизнедеятельности клеток.	

лабораторная работа - Строение и функции органоидов клетки, система клеточных вакуолей	Номер задания
Составьте схему и зарисуйте: 1. Модель созревания цистерн аппарата Гольджи. 2. Состав и функции лизосом. 3. Механизм образования мультивезикулярных телец. Рассмотрите в микроскоп и зарисуйте в альбом микропрепарат - аппарат Гольджи.	
Мультивезикулярных телец образование мультивезикулярных телец деградация ЭФР и рецепторов Мультивезикулярное тело (МВТ) Мультивезикулярное тело (МВТ)	Т.Л1_4

тест по итогам занятия - Строение и функции органоидов клетки, система клеточных вакуолей	Варианты ответов	Номер задания
1. Авторами клеточной теории являются:	 A) Р. Гук, А. Левенгук Б) Т. Морган, М. Мальпиги В)Т. Шванн, М. Шлейден, Р. Вирхов Г) Р. Броун, К. Бэр 	T.T1_4
2. Клетки животных впервые наблюдал	1 А. Р. Гук 2 Б. А. Левенгук 3 В. Т. Шванн 4 Г. Р. Вирхов	T.T2_4

3. Разрешающая способность светового микроскопа ограничена	 А. источником света Б. размерами линз В. длиной волны света Г. не ограничена 	T.T3_4
4. Гликокаликс образован	1 А. фосфолипидами 2 Б. нейтральными жирами 3 В. гликопротеидами и гликолипидами 4 Г. белками	T.T4_4
5. Положение клеточной теории «Клетка от клетки» сформулировал	 А. Шлейден Б. А. Левенгук В. Т.Шванн Г. Р. Вирхов 	T.T5_4
6. Получение клеточных фракций начинают	1 А. с фиксации клеток с использованием спиртов 2 Б. с фиксации клеток с использованием альдегидов 3 В. с обработки клеток гипертоническим раствором 4 Г. с гомогенезирования клеток	T.T6_4
7. Для прижизненного окрашивания клеток используют	 А. формалин Б. спирты В. кислые красители Г. витальные красители 	T.T7_4
8. Клетки фиксируют	1 А. витальными красителями 2 Б. физиологическим раствором 3 В. спиртами 4 Г. дистиллированной водой	T.T8_4
9. Разрешающая способность современных электронных микроскопов достигает	1 А. 500 нм. 2 Б. 50 нм.	T.T9_4

	3 В. 0,1 нм 4 Г. 100 нм.	
10. При культивировании клеток и тканей животных необходимы	 А. освещенность Б. постоянное встряхивание культур В. температура 40 градусов С Г. стерильность 	T.T10_4
11. Для успешного культивирования клеток теплокровных животных необходимо поддерживать температуру	 А. 28 градусов С Б. 37 градусов С В. 40 градусов С Г. 15 градусов С 	T.T11_4
12. Метод микрохирургии позволяет	1 А. изучать ультраструктуру митохондрий 2 Б. определить интенсивность синтеза белков в клетке 3 В. осуществить пересадку ядер 4 Г. изучать химический состав клетки	T.T12_4
13. К основным липидам наружной клеточной мембраны относятся	 А. триглицериды Б. фосфолипиды В. кардиолипин Г. порин 	T.T13_4
14.Клеточная мембрана содержит	 А. моносахариды Б. липиды В. цитохромы Г. Гистоны 	T.T14_4
К функциям лизосом относится:	1 А. синтез белков 2 Б. окислительное фосфорилирование 3 В. расщепление белков 4 Г. трансцитоз	T.T15_4


Аксонема ресничек и жгутиков образована	1 А. дуплетами микротрубочек 2 Б. триплетами микротрубочек 3 В. микрофиламентами 4 Г. промежуточными филаментами	T.T16_4
К функциям гладкой эндоплазматической сети относится	1 А. синтез АТФ 2 Б. формирование малых субъединиц рибосом 3 В. формирование больших субъединиц рибосом 4 Г. формирование клеточных мембран	T.T17_4
Циклический аденозинмонофосфат выполняет функцию	1 А. обеспечения клетки энергией 2 Б. транспорта веществ 3 В. вторичного посредника (мессенджера) 4 Г. рецепторную	T.T18_4
К функциям аппарата Гольджи относится	 А. синтез белков Б. синтез нуклеиновых кислот В. образование пероксисом Г. гликозилирование белков 	T.T19_4
Носителями цитоплазматической наследственности в клетке являются	 А. рибосомы Б. лизосомы В. пероксисомы Г. митохондрии 	T.T20_4
Компоненты дыхательной цепи находятся	 А. в наружной мембране митохондрий Б. в матриксе митохондрий В. в цитозоле Г. во внутренней мембране митохондрий 	T.T21_4
На рибосомах гранулярной		T.T22_4

эндоплазматической сети синтезируются	 А. стероидные гормоны Б. ферменты митохондрий В. белки, которые выделяются из клетки Г. рибосомные РНК 	
Лизосомы содержат ферменты	 А. ДНК-полимеразы Б. гликолиза В. АТФ-азы Г. липазы 	T.T23_4
Веретено деления образовано	 А. микротрубочками Б. микрофиламентами В. промежуточными филаментами Г. белками миозинами 	T.T24_4
Кристы образуются	 А. наружной мембраной ядерной оболочки Б. внутренней мембраной митохондрий В. наружной мембраной митохондрий Г. внутренней мембраной ядерной оболочки 	T.T25_4
Субъединицы рибосом собираются в:	 А. эндоплазматической сети Б. ядрышке В. аппарате Гольджи Г. цитозоле 	T.T26_4
В цистернах эндоплазматической сети происходит	 А. синтез белков Б. фолдинг белков В. синтез РНК Г. процессинг РНК 	T.T27_4
Первичные лизосомы отделяются	 А. от ядра Б. от аппарата Гольджи В. от эндоплазматической 	T.T28_4

	сети 4 Г. от вторичных лизосом	
В образовании перетяжки при делении клеток животных принимают участие	 А. микротрубочки Б. промежуточные филаменты В. микрофиламенты Г. плазмодесмы 	T.T29_4

лабораторная работа - Особенности пластического и энергетического обмена в различных типах клеток		
	Номер задания Т.Л1_5	
НСОН С(О)О (Ф) 3-Фосфоницеронифосфат СН ₂ О (Ф) НОСН НСОН НСОН НСОП Тинцеральдегид-3- фосфат Фосфат Рис. 4. Упрощенная схема щижла Калвина; (Р)— остаток фосфорной к-ты.		

лабораторная работа - Строение, состав, свойства и функции цитоскелета,	Номер
межклеточные контакты	задания
Составьте схемы:	
1. Строение микрофиламентов	
2. Полимеризация тубулина в микротрубочках.	Т.Л1_6
3. Поперечное сечение реснички.	

лабораторная работа - Строение и функции ядра		
Зарисуйте схемы:		
1. Строение ядерной поры.		
2. Строение ядрышка.		
3. Структурная организация ДНК	в хромосомах.	
	нация ДНК в хромосомах мпактизоции)	
5 tm 100000000000000000000000000000000000	Участок двойной спирали ДНК	
	Нутикововный уравень — 20 км насельные "Оусине" - ВИК наволного в бытовые "Оусине" - быки — истопны с образованием нукавосомной мити.	
30 m	Соленоийный уравень Скручивание пуслевскомной мити с образованные кроичативнового волокна - среднованные кроичативнового волокна - по типу соленоийа или сутербийа,	Т.Л1_7
300 ren State Stat	Истя вой уровень Упосная грычатывых фабрила петами. Петаи факсирэвтся специальным белковым матриксом (скоффолд).	
700 nm	Доменный уровены Образование петон-ных доменов, котпорые Своим основанием прихренявается к белковаму мотрация з SMR сострій вакимента к белковаму мотрация з SMR сострій вакимент кезівня содержанием АЛТ пар нуклеотидов.	
1400 rsm	Хрангосыный уровень последний бысший уровень компактизоции ДНК. Митотическая кромосома, состоящая из двух краматий.	

устный опрос / собеседование - Генетический код	
Свойства генетического кода. Транскрипция, сплайсинг, присоединение и модификация нуклеотидов в ходе процессинга мРНК. Инициация, элонгация и терминация синтеза белка. Основные принципы репликации ДНК. Ферментативный комплекс, обеспечивающий репликацию, механизмы удвоения лидирующей и отстающей цепей ДНК. Механизмы репликации теломерных отделов ДНК.	Т.У1_8

устный опрос / собеседование - Клеточный цикл; механизмы апоптоза и	Номер
некроза	задания

Типы деления клеток, биологическое значение митоза и мейоза. Профаза митоза, механизмы конденсации хромосом, фрагментации ядерной оболочки, структур эндоплазматической сети и аппарата Гольджи, построения веретена деления. Метафаза митоза, первичный асинхронный дрейф хромосом, присоединение кинетохоров хромосом к микротрубочкам веретена деления, отделение сестринских хроматид. Анафаза митоза, механизм расхождения хромосом к полюсам клетки. Телофаза, механизмы формирования ядра, деконденсации хромосом, восстановления ЭПС и аппарата Гольджи. Цитокинез. Т.У1 9 Профаза мейоза, лептотена, зиготена, пахитена, диплотена, диакинез. Особенности формирования метафазной пластинки, анофазы и телофазы редукционного деления. Значение редукционного деления для формирования новых комбинаций генов. Эквационное деление. Механизмы и значение амитоза. Эндомитоз, особенности строения и функционирования политенных хроиосом. Изучение значения митогенов и антимитогенов в регуляции клеточного цикла, участия циклинов и циклинзависимых протеинкиназ в регуляции митоза.

3. Контрольные задания. Промежуточная аттестация

Экзамен. Практическое задание	Номер задания
Клетка вступает в интерфазу митоза, содержит 20 хромосом, сколько хромосом и молекул ДНК будет содержать эта клетка на стадии профазы и анафазы митоза?	П.П1
Рассчитайте энергетический эффект в дыхательной цепи митохондрий от молекул НАДН2, образованных на этапе анаэробного окисления при расщеплении и окислении 6 молекул глюкозы?	П.П2
Участок ДНК, кодирующий т-РНК имеет последовательность ААГГГЦ ТТТЦЦГ ГГА второй триплет кодирует антикодон, какую аминокислоту будет переносить в ходе синтеза белка соответствующая Т-РНК?	П.П3
Клетка вступает в митоз, содержит 10 хромосом. Сколько хромосом и молекул ДНК будет содержать клетка на стадиях метафазы и анафазы?	П.П4
Рассчитайте энергетический эффект в дыхательной цепи митохондрий от молекул НАДН2, образованных на этапе окислительного декарбоксилирования при расщеплении и окислении 4 молекул глюкозы?	П.П5
м-РНК имеет последовательность УУУ АГЦ АУГ ААЦ АГГ ГГЦ ГЦЦ АЦЦ УГА, определите последовательность аминокислот в соответствующем фрагменте белка?	П.П6
На стадии анафазы митоза клетка содержит 8 хромосом, сколько хромосом и сколько молекул ДНК будет содержать данная клетка при переходе стадию G0?	П.П7
Рассчитайте энергетический эффект в дыхательной цепи митохондрий от молекул НАДН2, образованных в цикле Кребса при расщеплении и окислении 3 молекул глюкозы?	П.П8
Триплет, кодирующий аминокислоту в ДНК –АГЦ, определить антикодон т- РНК, обеспечивающей перенос данной аминокислоты.	П.П9
Ядро клетки на стадии телофазы митоза содержит 8 хромосом, сколько хромосом и молекул ДНК содержала клетка в пресинтетический период интерфазы?	П.П10

Сколько молекул ацетил-КоА вступает в цикл Кребса при расщеплении и окислении 5 молекул глюкозы?	П.П11
Отрезок цепи ДНК, кодирующий белок и имеющий направление 5 – 3 содержит последовательность нуклеотидов ТТТАГГ ГГА ЦЦААЦГ ГЦА. Какую последовательность аминокислот будет иметь соответствующий участок белка?	П.П12
Клетка в постсинтетический период интерфазы содержит 12 ДНК, сколько хромосом и сколько молекул ДНК будет содержать клетка на стадиях профазы и анафазы митоза?	П.П13
В дыхательную цепь митохондрий поступили атомы водорода от 10 восстановленных ФАД. Сколько молекул АТФ может быть синтезировано за счет окислительного фосфорилирования?	П.П14
М- РНК содержит 90 нуклеотидов, четвертый триплет АУГ, сколько аминокислот может содержать синтезированный с участием данной РНК белок?	П.П15
На этапе завершения синтетического периода клетка содержит 6 хромосом, сколько хромосом и молекул ДНК будет содержать клетка на стадии анафазы и телофазы митоза?	П.П16
Клетка вступает в митоз и на стадии G1 содержит 8 хромосом. Сколько хромосом и молекул ДНК будет содержать клетка на всех последующих стадиях?	П.П17
В цикле Кребса произошло расщепление и окисление 12 молекул ацетил-КоА сколько молекул АТФ при этом может быть синтезировано?	П.П18
В состав участка цепи (5-3) молекулы ДНК входит 20% цитозина, 30% аденина, сколько урацила будет содержать РНК, образующаяся при транскрипции данного участка ДНК.	П.П19
Клетка на стадии анафазы содержит 12 хромосом. Сколько хромосом и молекул ДНК будет содержать клетка на предшествующей анафазе стадиях?	П.П20

Экзамен. Теоретический вопрос	Номер задания
1. Предмет и задачи цитологии. Связь цитологии с другими науками, прикладное значение цитологии.	П.ТВ1
2. История цитологии. Создание светового микроскопа. Описание клеток растений, простейших и многоклеточных животных. Открытие ядра клетки.	П.ТВ2
3. Клеточная теория Т.Шванна и М.Шлейдена. Определение понятий «клетка» и «ткань». Клеточная теория в современный период.	П.ТВ3
4. Светооптическая микроскопия.	П.ТВ4
5. Светопольная микроскопия, фазовоконтрастная микроскопия, микроскопия в темном поле, флуоресцентная и интерференционная микроскопия	П.ТВ5
6. Электронная микроскопия.	П.ТВ6
Состав бимолекулярного липидного слоя мембран и его свойства.	П.ТВ7
Характеристика периферических, полуинтегральных, трансмембранных белков мембран.	П.ТВ8
Углеводные компоненты мембраны, структура и свойства гликокаликса.	П.ТВ9
Пограничная и защитная функции мембраны.	П.ТВ10
Механизмы пассивного и активного транспорта веществ и ионов через	П.ТВ11

мембрану.	
Особенности химического состава мембран органоидов и плазмолеммы.	П.ТВ12
Эндоцитоз, экзоцитоз, транцитоз.	П.ТВ13
Рецепторная, сигнальная и ферментативная функции мембран.	П.ТВ14
Органические и неорганические вещества цитозоля, физико-химические свойства цитозоля. Значение цитозоля в поддержании клеточного гомеостаза.	П.ТВ15
Углеводные, липидные, белковые включения цитоплазмы и их роль в процессах жизнедеятельности клеток.	П.ТВ16
Органоиды и вакуоли как система компартментов клетки. Строение гладкой и гранулярной эндоплазматической сети. Предназначение, процессинг, фолдинг, гликозилирование, и адресование белков, синтезируемых на рибосомах, связанных с ЭПС. Участие гладкой ЭПС в синтезе фосфолипидов, стероидных гормонов, биотрансформации ксенобиотиков.	П.ТВ17
Строение аппарата Гольджи, механизмы преобразования, транспорта, сортировки и секреции веществ, образования первичных лизосом с участием аппарата Гольджи.	П.ТВ18
Образование вторичных лизосом, активация ферментов лизосом.	П.ТВ19
Участие лизосом в процессах внутриклеточного переваривания веществ, аутолизисе, аутофагоцитозе, фагоцитозе.	П.ТВ20
Болезни накопления.	П.ТВ21
Вакуолярный транспорт веществ.	П.ТВ22
Строение и функции пероксисом.	П.ТВ23
Строение и функции протеосом и их участие в утилизации белков.	П.ТВ24
Энергетический и пластический обмен в клетках прокариот, растений, грибов, животных.	П.ТВ25
Строение митохондрий, митохондрии как полуавтономные органоиды клетки, симбиогенетическая теория происхождения митохондрий.	П.ТВ26
Подготовительный, анаэробный и аэробный этапы окисления глюкозы, субстратное и окислительное фосфорилирование.	П.ТВ27
Строение и биогенез пластид, фотофосфорилирование, фотосинтез	П.ТВ28
Строение, механизмы формирования и разрушения микротрубочек.	П.ТВ29
Строение, функции и механизм движения ресничек и жгутиков.	П.ТВ30
Центриоли клеточного центра и базальные тельца как центры организации микротрубочек.	П.ТВ31
Значение микротрубочек, динеинов и кинезинов в транспорте веществ, органоидов, хромосом.	П.ТВ32
Строение, механизмы формирования и разрушения микрофиламентов. Механизмы движения и изменения формы клеток.	П.ТВ33
Микроворсинки и их значение в жизнедеятельности клеток.	П.ТВ34
Строение, химический состав и функции промежуточных филаментов.	П.ТВ35
Строение ядерной оболочки, комплекс ядерных пор, ядерная ламина. Ядерный матрикс, ядерный сок.	П.ТВ36
Строение ядрышка. Ядрышковый организатор, гены рРНК, синтез и процессинг рРНК, формирование субъединиц рибосом и механизм их пранспорта в цитоплазму.	П.ТВ37
Состав и структура хроматина ядра. Строение нуклеоида и плазмид клеток	П.ТВ38

прокариот.	
Свойства генетического кода. Транскрипция, сплайсинг, присоединение и модификация нуклеотидов в ходе процессинга мРНК.	П.ТВ39
Инициация, элонгация и терминация синтеза белка.	П.ТВ40
Основные принципы репликации ДНК. Ферментативный комплекс, обеспечивающий репликацию, механизмы удвоения лидирующей и отстающей цепей ДНК. Механизмы репликации теломерных отделов ДНК.	П.ТВ41
Типы деления клеток, биологическое значение митоза и мейоза.	П.ТВ42
Профаза митоза, механизмы конденсации хромосом, фрагментации ядерной оболочки, структур эндоплазматической сети и аппарата Гольджи, построения веретена деления.	П.ТВ43
Метафаза митоза, первичный асинхронный дрейф хромосом, присоединение кинетохоров хромосом к микротрубочкам веретена деления, отделение сестринских хроматид.	П.ТВ44
Анофаза митоза, механизм расхождения хромосом к полюсам клетки. Телофаза, механизмы формирования ядра, деконденсации хромосом, восстановления ЭПС и аппарата Гольджи. Цитокинез.	П.ТВ45
Профаза мейоза, лептотена, зиготена, пахитена, диплотена, диакинез.	П.ТВ46
Особенности формирования метафазной пластинки, анофазы и телофазы редукционного деления. Значение редукционного деления для формирования новых комбинаций генов.	П.ТВ47
Эквационное деление. Механизмы и значение амитоза.	П.ТВ48
Эндомитоз, особенности строения и функционирования политенных хромосом.	П.ТВ49
Апоптоз и некроз	П.ТВ50

4. Балльная система оценивания по дисциплине

ОФО

Семестр (Курс)	- 4 (2)		
Форма текущего контроля	Раздел дисциплины	Максимальный балл	Максимальный приведенный балл
доклад / конференция / реферат	Предмет и задачи, история развития, методы цитологии	4	
лабораторная работа	Особенности пластического и энергетического обмена в различных типах клеток	1	
лабораторная работа	Строение и функции органоидов клетки, система клеточных вакуолей	1	
лабораторная работа	Строение и функции ядра	1	
лабораторная работа	Строение, свойства и функции биологических	1	

	мембран		
лабораторная работа	меморан Строение, состав, свойства и функции цитоскелета, межклеточные контакты	1	
тест по итогам занятия	Строение и функции органоидов клетки, система клеточных вакуолей	5	
тест по итогам занятия	Строение, свойства и функции биологических мембран	5	
устный опрос / собеседование	Генетический код	1	
устный опрос / собеседование	Клеточный цикл; механизмы апоптоза и некроза	1	
устный опрос / собеседование	Химический состав, свойства и функции цитозоля, характеристика клеточных включений	1	
Макси	имальный текущий балл	22	60
Промежуточная аттестация		экзамен	
			40
Максимальный аттестационный балл		18-20 баллов: Обучающийся, достигающий должного уровня: - даёт полный, глубокий, выстроенный логично по содержанию вопроса ответ, используя различные источники информации, не требующий дополнений - доказательно иллюстрирует основные теоретические положения практическими примерами; - способен глубоко анализировать теоретический и практический материал, обобщать его, самостоятельно делать выводы, вести диалог и высказывать свою точку зрения. 14-17 баллов: Обучающийся на должном уровне: - раскрывает учебный материал: даёт содержательно полный ответ, требующий незначительных дополнений и уточнений, которые он может сделать самостоятельно после наводящих вопросов преподавателя; - демонстрирует учебные умения и навыки в области решения практико-ориентированных задач;	

	- владеет способами анализа, сравнения,	
	обобщения и обоснования выбора методов	
	решения практико-ориентированных задач.	
	решения практико ориентированных зада і.	
	11-13 баллов: Достигнутый уровень оценки	
	результатов обучения обучающегося показывает:	
	- знания имеют фрагментарный характер,	
	отличаются поверхностью и малой	
	содержательностью; студент раскрывает	
	содержание вопроса, но не глубоко, бессистемно,	
	с некоторыми неточностями;	
	- слабо, недостаточно аргументированно может	
	обосновать связь теории с практикой;	
	- способен понимать и интерпретировать	
	основной теоретический материал по	
	дисциплине.	
	0.10.5	
	0-10 баллов: Результаты обучения обучающегося	
	свидетельствуют:	
	- об усвоении им некоторых элементарных	
	знаний, но студент не владеет понятийным	
	аппаратом изучаемой образовательной области	
	(учебной дисциплины);	
	- не умеет установить связь теории с практикой;	
	- не владеет способами решения практико-	
	ориентированных задач.	
Общий балл по дисциплине	44 100	

Общий балл по дисциплине за семестр складывается из результатов, полученных по формам текущего контроля в течение семестра и аттестационного балла.

Оценка успеваемости по дисциплине в семестре пересчитывается по приведенной 100-балльной шкале независимо от шкалы, определенной преподавателем.

Перевод баллов из 100-балльной шкалы в числовой и буквенный эквивалент:

- для экзамена, зачета с оценкой, курсовой работы (форма контроля из учебного плана):

Сумма баллов	Отметка	Буквенный эквивалент
86-100	5	Отлично
66-85	4	Хорошо
51-65	3	Удовлетворительно
0-50	2	Неудовлетворительно

5. Список используемых сокращений

Текущая аттестация

Тип задания	Сокращение
внеаудиторное чтение	T.B
доклад / конференция / реферат	Т.Д
индивидуальное задание (перевод / презентация / план урока / тезаурус / глоссарий / сценарий деловой игры / алгоритм задачи / программа /	Т.И

конспектирование научной литературы)	
итоговая лабораторная работа	Т.ЛР
кейс	T.KC
коллоквиум	T.K
контрольная работа	T.KP
лабораторная работа	Т.Л
отчет (по научно-исследовательской работе / практике)	T.O
письменная работа	Т.ПР
практическая работа	Т.П
расчетно-графическая работа	Т.РГ
семестровая работа	T.CP
ситуационная задача / ситуационное задание / проект	T.C3
творческая работа	T.TP
тест по итогам занятия	T.T
устный опрос / собеседование	Т.У
эссе	Т.Э

Промежуточная аттестация

Тип задания	Сокращение
Практическое задание	П.П
Теоретический вопрос	П.ТВ
Тестовый вопрос	П.Т