Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный химико-фармацевтический университет» Министерства здравоохранения Российской Федерации

Аннотация рабочей программы дисциплины Б1.В.ДВ.05.01 Моделирование биотехнологических процессов

Направление подготовки: 19.03.01 Биотехнология

Профиль подготовки:: Производство биофармацевтических

препаратов

Форма обучения: очная

Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

Компетенции, индикаторы и результаты обучения

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

УК-1.5 Рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки

Знать:

УК-1.5/Зн2 Знать параметры технологического процесса, характеризующие его эффективность при моделировании биотехнологических процессов

Уметь:

УК-1.5/Ум2 Уметь выбирать оптимальные способы решения задач и условия протекания биотехнологических процессов

ПК-П4 Способен проводить работы по фармацевтической разработке лекарственных средств

ПК-П4.1 Проводит исследования, испытания и экспериментальные работы по фармацевтической разработке в соответствии с утвержденными планами

Знать:

ПК-П4.1/Зн6 Знать научные подходы в совершенствовании биотехнологических процессов

Уметь:

ПК-П4.1/Ум9 Умеет проводить исследования по фармацевтической разработке с использованием методов математического моделирования

Место дисциплины в структуре ОП

Дисциплина (модуль) Б1.В.ДВ.05.01 «Моделирование биотехнологических процессов» относится к формируемой участниками образовательных отношений части образовательной программы и изучается в семестре(ах): 7.

Предшествующие дисциплины (практики) по связям компетенций:

- Б1.В.ДВ.02.01 3-D графика в системе "КОМПАС-ГРАФИКА";
- Б1.В.ДВ.04.02 Биотрансформация лекарственных веществ;
- Б1.В.ДВ.03.01 Биохимические основы иммунитета;
- Б1.О.08 Инженерная графика;
- Б1.О.03 Информационные технологии в профессиональной деятельности;
- Б1.О.28 Оборудование и основы проектирования биотехнологических производств;
- Б1.О.13 Органическая химия;
- Б1.О.18 Основы биохимии и молекулярной биологии;
- Б1.В.ДВ.03.02 Основы генетической инженерии;
- Б1.В.08 Основы клеточной инженерии;
- ФТД.В.02 Основы начертательной геометрии;
- Б1.О.04 Прикладная математика;
- Б1.В.10 Технология выделения и очистки биологически активных веществ;
- Б1.О.12 Философия;
- Б1.В.ДВ.04.01 Химия биологически активных веществ;
- Б1.В.ДВ.02.02 Численные методы;

Последующие дисциплины (практики) по связям компетенций:

- Б1.В.ДВ.08.02 Вирусы в биотехнологии и медицине;
- Б1.В.ДВ.07.01 Инженерная энзимология;
- Б1.В.ДВ.05.02 Методы физико-математического моделирования биохимических реакций и транспорта молекул;
 - Б1.В.ДВ.08.03 Наноматериалы в биотехнологии;
 - Б1.О.28 Оборудование и основы проектирования биотехнологических производств;
 - Б1.В.18 Организация производства по GMP;
 - Б1.В.ДВ.08.01 Основы микологии;
 - Б1.В.ДВ.07.02 Основы производства лекарственных средств из плазмы крови;
- Б3.01(Д) Подготовка к процедуре защиты и защита выпускной квалификационной работы;
- Б1.В.13 Право интеллектуальной собственности в производстве лекарственных средств;
- Б1.В.ДВ.06.01 Применение капиллярного электрофореза и хроматографических методов анализа в биотехнологии;
 - Б2.В.01(П) производственная практика (преддипломная практика);
- Б1.О.29 Статистические методы обработки данных с использованием программного обеспечения;
 - Б1.В.10 Технология выделения и очистки биологически активных веществ;
 - Б1.В.ДВ.06.02 Цифровые устройства измерения, контроля и управления;

В процессе изучения дисциплины студент готовится к видам профессиональной деятельности и решению профессиональных задач, предусмотренных ФГОС ВО и образовательной программой.

2. Содержание разделов, тем дисциплин

Раздел 1. Моделирование технологических процессов

Тема 1.1. Компьютерное моделирование технологических процессов

"Понятие математического моделирования. Этапы моделирования и типы математических моделей. Структура потоков в аппаратах биотехнологии. Особенности моделирование реакторов и биотехнологических процессов.

Исследование кинетики. Понятие диффузионной модели.

Постановка задачи оптимизации (оптимизация работы реактора). Моделирование процессов переноса. Принципы построения технологических систем. Примеры синтеза простейших технологических систем."

Объем дисциплины и виды учебной работы

			- CI.12				<u> </u>		1 Patorin
Период обучения	Общая трудоемкость (часы)	Общая трудоемкость (ЗЕТ)	Контактная работа (часы, всего)	Консультации в период теоретического обучения (часы)	Контактные часы на аттестацию в период обучения (часы)	Лекции (часы)	Практические занятия (часы)	Самостоятельная работа студента (часы)	Промежуточная аттестация (часы)
Седьмой семестр	72	2	44	12	2	14	16	28	Зачет
Всего	72	2	44	12	2	14	16	28	

Разработчик(и)

Кафедра процессов и аппаратов химической технологии, кандидат технических наук, доцент Сауц А. В.