Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный химико-фармацевтический университет» Министерства здравоохранения Российской Федерации

Аннотация рабочей программы дисциплины Б1.О.19 Коллоидная химия

Специальность: 33.05.01 Фармация

Специализация:: Фармация

Форма обучения: очная

Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

Компетенции, индикаторы и результаты обучения

ОПК-1 Способен использовать основные биологические, физико-химические, химические, математические методы для разработки, исследований и экспертизы лекарственных средств, изготовления лекарственных препаратов

ОПК-1.2 Применяет основные физико-химические и химические методы анализа для разработки, исследований и экспертизы лекарственных средств, лекарственного растительного сырья и биологических объектов

Знать:

ОПК-1.2/Зн2 Имеет представление об интерполяции, экстраполяции экспериментальных данных для нахождения искомых величин

ОПК-1.2/Зн3 Имеет представление о работе с литературными источниками, интернет-ресурсами, электронными библиотечными системами

ОПК-1.2/Зн28 Знать основные термины, используемые в коллоидной химии *Уметь*:

ОПК-1.2/Ум10 Умеет оформить результаты анализа.

ОПК-1.2/Ум18 Уметь, пользуясь литературными данными, проводить расчёты адсорбции, удельной поверхности, размер ачастиц и элеутрокинетического потенциала.

ОПК-1.3 Применяет основные методы физико-химического анализа в изготовлении лекарственных препаратов

Знать:

ОПК-1.3/Зн2 Знать основные методы физико-химического анализа в изготовлении лекарственных препаратов

VMemb.

ОПК-1.3/Ум1 Уметь применять основные методы физико-химического анализа в изготовлении лекарственных препаратов

Дисциплина (модуль) Б1.О.19 «Коллоидная химия» относится к обязательной части образовательной программы и изучается в семестре(ах): 4.

Предшествующие дисциплины (практики) по связям компетенций:

- Б1.О.16 Аналитическая химия;
- Б1.О.02 Биология;
- Б1.О.14 Ботаника;
- Б1.О.05 Математика;
- Б1.О.18 Микробиология;
- Б1.О.06 Общая и неорганическая химия;
- Б1.О.17 Органическая химия;
- Б1.О.12 Статистические методы в фармации;
- Б1.О.09 Физика;
- Б1.О.15 Физическая химия;

Последующие дисциплины (практики) по связям компетенций:

- Б1.О.16 Аналитическая химия;
- Б1.О.27 Биологическая химия;
- Б1.О.18 Микробиология;
- Б1.О.17 Органическая химия;
- БЗ.01(Г) Подготовка к сдаче и сдача государственного экзамена;
- $52.0.05(\Pi)$ производственная практика (практика по контролю качества лекарственных средств);
 - Б2.О.08(П) производственная практика (практика по фармацевтической технологии);
 - Б1.О.31 Технология лекарственных форм аптечного изготовления;
 - Б1.О.34 Токсикологическая химия;
 - Б2.О.03(У) учебная практика (практика по фармакогнозии);
 - Б1.О.28 Фармакогнозия;
 - Б1.О.30 Фармацевтическая химия;

В процессе изучения дисциплины студент готовится к видам профессиональной деятельности и решению профессиональных задач, предусмотренных ФГОС ВО и образовательной программой.

2. Содержание разделов, тем дисциплин

Раздел 1. Поверхностные явления в дисперсных системах.

(Консультации в период теоретического обучения - 2ч.; Лабораторные занятия - 9ч.; Лекции - 6ч.; Самостоятельная работа студента - 18ч.)

Тема 1.1. Поверхностная энергия и поверхностное натяжение (Лабораторные занятия - 3ч.; Лекции - 2ч.)

Классификация дисперсных систем. Дисперсность. Удельная поверхность. Поверхностная энергия и поверхностное натяжение, силовое и энергетическое определение. Факторы, влияющие на поверхностное натяжение. Значение поверхностных явлений для фармации. Изотерма поверхностного натяжения.

Тема 1.2. Сорбция

(Консультации в период теоретического обучения - 2ч.; Лабораторные занятия - 6ч.; Лекции - 4ч.; Самостоятельная работа студента - 18ч.)

Сорбция: адсорбция, абсорбция, хемосорбция. Понятие адсорбции, обозначение, размерность, положительная и отрицательная адсорбция, механизм адсорбции. Модификация поверхности при помощи адсорбции. Изотермы адсорбции. Расчет адсорбции. Основы адсорбционной хроматографии.

Капиллярная конденсация. Капиллярное поднятие жидкостей. Оствальдовское созревание.

Раздел 2. Адсорбция электролитов. Образование двойного электрического слоя. Получение и свойства дисперсных систем. Ультрамикрогетерогенные системы.

(Консультации в период теоретического обучения - 2ч.; Лабораторные занятия - 9ч.; Лекции - 4ч.; Самостоятельная работа студента - 18ч.)

Тема 2.1. Адсорбция электролитов

(Лабораторные занятия - 3ч.; Лекции - 2ч.)

Адсорбция электролитов. Термодинамические основы возникновения двойного электрического слоя (ДЭС). Образование ДЭС на инонных кристаллах и оксидах. ПОИ и ПИ. Правило Панета-Фаянса. Ионный обмен: иониты, закономерности ионного обмена.

Тема 2.2. Устойчивость коллоидно-дисперсных систем. Электрокинетические свойства дисперсных систем

(Консультации в период теоретического обучения - 2ч.; Лабораторные занятия - 6ч.; Лекции - 2ч.; Самостоятельная работа студента - 18ч.)

Устойчивость коллоидно-дисперсных систем. Седиментационная устойчитвость. Агрегативная устойчивость. Теория ДЛФО (Дерягина-Ландау-Фервея-Овербека). Коагуляция гидрофобных золей под действием электролитов. Коллоидная защита и сенсибилизация. Электрокинетические свойства дисперсных систем, опыты Рейса и причины возникновения электрокинетических явлений. Осушка дисперсных систем, электродиализ. Электрофорез белков.

Раздел 3. Отдельные типы дисперсных систем. Микрогетерогенные системы (Лабораторные занятия - 3ч.; Лекции - 4ч.)

Тема 3.1. Мицеллы ПАВ.

(Лекции - 2ч.)

Критическая концентрация мицеллобразования (ККМ), влияние различных факторов. Методы определения ККМ. Солюбилизация. Липосомы. Методы получения и основные характеристики. Гидрофильно-липофильный баланс

Тема 3.2. Отдельные классы микрогетерогенных систем

(Лабораторные занятия - 3ч.; Лекции - 2ч.)

Эмульсии. Получение, классификация, стабилизация, определение типа эмульсии. Правило Банкрофта.

Поверхностно активные и поверхностно инактивные вещества (ПАВ и ПИВ). Поверхностная активность, ее выражение и измерение. Правило Дюкло-Траубе.

Раздел 4. Высокомолекулярные соединения. Реология растворов высокомолекулярных соединений и дисперсных систем.

(Контактные часы на аттестацию в период обучения - 2ч.; Лабораторные занятия - 9ч.; Лекции - 4ч.; Самостоятельная работа студента - 18ч.)

Тема 4.1. Изоэлектрическая точка полиамфолитов (ИЭТ) (Лабораторные занятия - 3ч.; Лекции - 2ч.)

Изоэлектрическая точка полиамфолитов (ИЭТ), методы ее определения. Растворы ВМВ. Высаливание, коацервация, факторы, на них влияющие. Осмотическое давление в растворах ВМВ, мембранное равновесие (равновесие Доннана).

Тема 4.2. Реология растворов ВМВ и коллоидно-дисперсных систем

(Контактные часы на аттестацию в период обучения - 2ч.; Лабораторные занятия - 6ч.; Лекции - 2ч.; Самостоятельная работа студента - 18ч.)

Реология растворов ВМВ и коллоидно-дисперсных систем Реология как раздел коллоидной химии

Реологические свойства чистых жидкостей и неструктурированных коллоидных систем. Закон Ньютона и уравнение Пуазейля. Вязкость, методы ее определения. Уравнение Эйнштейна для расчета вязкости.

Неньютоновские жидкости. Аномалия вязкости. Структурная и пластическая вязкость. Уравнение Бингама.

Объем дисциплины и виды учебной работы

			осиг ді	СЦШ			ды		праобты
Период обучения	Общая трудоемкость (часы)	Общая трудоемкость (ЗЕТ)	Контактная работа (часы, всего)	Консультации в период теоретического обучения (часы)	Контактные часы на аттестацию в период обучения (часы)	Лабораторные занятия (часы)	Лекции (часы)	Самостоятельная работа студента (часы)	Промежуточная аттестация (часы)
Четвертый семестр	108	3	54	4	2	30	18	54	Диффере нцирован ный зачет
Всего	108	3	54	4	2	30	18	54	

Разработчик(и)

Кафедра физической и коллоидной химии, кандидат химических наук, доцент Широкова И. Ю.